跳转至

Python 光速入门教程

# 用井字符开头的是单行注释

""" 多行字符串用三个引号
    包裹,也常被用来做多
    行注释
"""

1. 原始数据类型和运算符

# 整数
3  # => 3

# 算术没有什么出乎意料的
1 + 1  # => 2
8 - 1  # => 7
10 * 2  # => 20

# 但是除法例外,会自动转换成浮点数
35 / 5  # => 7.0
5 / 3  # => 1.6666666666666667

# 整数除法的结果都是向下取整
5 // 3     # => 1
5.0 // 3.0 # => 1.0 # 浮点数也可以
-5 // 3  # => -2
-5.0 // 3.0 # => -2.0

# 浮点数的运算结果也是浮点数
3 * 2.0 # => 6.0

# 模除
7 % 3 # => 1

# x的y次方
2**4 # => 16

# 用括号决定优先级
(1 + 3) * 2  # => 8

# 布尔值
True
False

# 用not取非
not True  # => False
not False  # => True

# 逻辑运算符,注意and和or都是小写
True and False #=> False
False or True #=> True

# 整数也可以当作布尔值
0 and 2 #=> 0
-5 or 0 #=> -5
0 == False #=> True
2 == True #=> False
1 == True #=> True

# 用==判断相等
1 == 1  # => True
2 == 1  # => False

# 用!=判断不等
1 != 1  # => False
2 != 1  # => True

# 比较大小
1 < 10  # => True
1 > 10  # => False
2 <= 2  # => True
2 >= 2  # => True

# 大小比较可以连起来!
1 < 2 < 3  # => True
2 < 3 < 2  # => False

# 字符串用单引双引都可以
"这是个字符串"
'这也是个字符串'

# 用加号连接字符串
"Hello " + "world!"  # => "Hello world!"

# 字符串可以被当作字符列表
"This is a string"[0]  # => 'T'

# 用.format来格式化字符串
"{} can be {}".format("strings", "interpolated")

# 可以重复参数以节省时间
"{0} be nimble, {0} be quick, {0} jump over the {1}".format("Jack", "candle stick")
#=> "Jack be nimble, Jack be quick, Jack jump over the candle stick"

# 如果不想数参数,可以用关键字
"{name} wants to eat {food}".format(name="Bob", food="lasagna") #=> "Bob wants to eat lasagna"


# None是一个对象
None  # => None

# 当与None进行比较时不要用 ==,要用is。is是用来比较两个变量是否指向同一个对象。
"etc" is None  # => False
None is None  # => True

# None,0,空字符串,空列表,空字典都算是False
# 所有其他值都是True
bool(0)  # => False
bool("")  # => False
bool([]) #=> False
bool({}) #=> False

格式化:https://blog.csdn.net/python1639er/article/details/112325519

2. 变量和集合

# print是内置的打印函数
print("I'm Python. Nice to meet you!")

# 在给变量赋值前不用提前声明
# 传统的变量命名是小写,用下划线分隔单词
some_var = 5
some_var  # => 5

# 访问未赋值的变量会抛出异常
# 参考流程控制一段来学习异常处理
some_unknown_var  # 抛出NameError

# 用列表(list)储存序列
li = []
# 创建列表时也可以同时赋给元素
other_li = [4, 5, 6]

# 用append在列表最后追加元素
li.append(1)    # li现在是[1]
li.append(2)    # li现在是[1, 2]
li.append(4)    # li现在是[1, 2, 4]
li.append(3)    # li现在是[1, 2, 4, 3]
# 用pop从列表尾部删除
li.pop()        # => 3 且li现在是[1, 2, 4]
# 把3再放回去
li.append(3)    # li变回[1, 2, 4, 3]

# 列表存取跟数组一样
li[0]  # => 1
# 取出最后一个元素
li[-1]  # => 3

# 越界存取会造成IndexError
li[4]  # 抛出IndexError

# 列表有切割语法
li[1:3]  # => [2, 4]
# 取尾
li[2:]  # => [4, 3]
# 取头
li[:3]  # => [1, 2, 4]
# 隔一个取一个
li[::2]   # =>[1, 4]
# 倒排列表
li[::-1]   # => [3, 4, 2, 1]
# 可以用三个参数的任何组合来构建切割
# li[始:终:步伐]

# 用del删除任何一个元素
del li[2]   # li is now [1, 2, 3]

# 列表可以相加
# 注意:li和other_li的值都不变
li + other_li   # => [1, 2, 3, 4, 5, 6]

# 用extend拼接列表
li.extend(other_li)   # li现在是[1, 2, 3, 4, 5, 6]

# 用in测试列表是否包含值
1 in li   # => True

# 用len取列表长度
len(li)   # => 6


# 元组是不可改变的序列
tup = (1, 2, 3)
tup[0]   # => 1
tup[0] = 3  # 抛出TypeError

# 列表允许的操作元组大都可以
len(tup)   # => 3
tup + (4, 5, 6)   # => (1, 2, 3, 4, 5, 6)
tup[:2]   # => (1, 2)
2 in tup   # => True

# 可以把元组合列表解包,赋值给变量
a, b, c = (1, 2, 3)     # 现在a是1,b是2,c是3
# 元组周围的括号是可以省略的
d, e, f = 4, 5, 6
# 交换两个变量的值就这么简单
e, d = d, e     # 现在d是5,e是4


# 用字典表达映射关系
empty_dict = {}
# 初始化的字典
filled_dict = {"one": 1, "two": 2, "three": 3}

# 用[]取值
filled_dict["one"]   # => 1


# 用keys获得所有的键。因为keys返回一个可迭代对象,所以在这里把结果包在list里。我们下面会详细介绍可迭代。
# 注意:字典键的顺序是不定的,你得到的结果可能和以下不同。
list(filled_dict.keys())   # => ["three", "two", "one"]


# 用values获得所有的值。跟keys一样,要用list包起来,顺序也可能不同。
list(filled_dict.values())   # => [3, 2, 1]


# 用in测试一个字典是否包含一个键
"one" in filled_dict   # => True
1 in filled_dict   # => False

# 访问不存在的键会导致KeyError
filled_dict["four"]   # KeyError

# 用get来避免KeyError
filled_dict.get("one")   # => 1
filled_dict.get("four")   # => None
# 当键不存在的时候get方法可以返回默认值
filled_dict.get("one", 4)   # => 1
filled_dict.get("four", 4)   # => 4

# setdefault方法只有当键不存在的时候插入新值
filled_dict.setdefault("five", 5)  # filled_dict["five"]设为5
filled_dict.setdefault("five", 6)  # filled_dict["five"]还是5

# 字典赋值
filled_dict.update({"four":4}) #=> {"one": 1, "two": 2, "three": 3, "four": 4}
filled_dict["four"] = 4  # 另一种赋值方法

# 用del删除
del filled_dict["one"]  # 从filled_dict中把one删除


# 用set表达集合
empty_set = set()
# 初始化一个集合,语法跟字典相似。
some_set = {1, 1, 2, 2, 3, 4}   # some_set现在是{1, 2, 3, 4}

# 可以把集合赋值于变量
filled_set = some_set

# 为集合添加元素
filled_set.add(5)   # filled_set现在是{1, 2, 3, 4, 5}

# & 取交集
other_set = {3, 4, 5, 6}
filled_set & other_set   # => {3, 4, 5}

# | 取并集
filled_set | other_set   # => {1, 2, 3, 4, 5, 6}

# - 取补集
{1, 2, 3, 4} - {2, 3, 5}   # => {1, 4}

# in 测试集合是否包含元素
2 in filled_set   # => True
10 in filled_set   # => False

3. 流程控制和迭代器

# 先随便定义一个变量
some_var = 5

# 这是个if语句。注意缩进在Python里是有意义的
# 印出"some_var比10小"
if some_var > 10:
    print("some_var比10大")
elif some_var < 10:    # elif句是可选的
    print("some_var比10小")
else:                  # else也是可选的
    print("some_var就是10")


"""
用for循环语句遍历列表
打印:
    dog is a mammal
    cat is a mammal
    mouse is a mammal
"""
for animal in ["dog", "cat", "mouse"]:
    print("{} is a mammal".format(animal))

"""
"range(number)"返回数字列表从0到给的数字
打印:
    0
    1
    2
    3
"""
for i in range(4):
    print(i)

"""
while循环直到条件不满足
打印:
    0
    1
    2
    3
"""
x = 0
while x < 4:
    print(x)
    x += 1  # x = x + 1 的简写

# 用try/except块处理异常状况
try:
    # 用raise抛出异常
    raise IndexError("This is an index error")
except IndexError as e:
    pass    # pass是无操作,但是应该在这里处理错误
except (TypeError, NameError):
    pass    # 可以同时处理不同类的错误
else:   # else语句是可选的,必须在所有的except之后
    print("All good!")   # 只有当try运行完没有错误的时候这句才会运行


# Python提供一个叫做可迭代(iterable)的基本抽象。一个可迭代对象是可以被当作序列
# 的对象。比如说上面range返回的对象就是可迭代的。

filled_dict = {"one": 1, "two": 2, "three": 3}
our_iterable = filled_dict.keys()
print(our_iterable) # => range(1,10) 是一个实现可迭代接口的对象

# 可迭代对象可以遍历
for i in our_iterable:
    print(i)    # 打印 one, two, three

# 但是不可以随机访问
our_iterable[1]  # 抛出TypeError

# 可迭代对象知道怎么生成迭代器
our_iterator = iter(our_iterable)

# 迭代器是一个可以记住遍历的位置的对象
# 用__next__可以取得下一个元素
our_iterator.__next__()  #=> "one"

# 再一次调取__next__时会记得位置
our_iterator.__next__()  #=> "two"
our_iterator.__next__()  #=> "three"

# 当迭代器所有元素都取出后,会抛出StopIteration
our_iterator.__next__() # 抛出StopIteration

# 可以用list一次取出迭代器所有的元素
list(filled_dict.keys())  #=> Returns ["one", "two", "three"]

4. 函数

# 用def定义新函数
def add(x, y):
    print("x is {} and y is {}".format(x, y))
    return x + y    # 用return语句返回

# 调用函数
add(5, 6)   # => 印出"x is 5 and y is 6"并且返回11

# 也可以用关键字参数来调用函数
add(y=6, x=5)   # 关键字参数可以用任何顺序


# 我们可以定义一个可变参数函数
def varargs(*args):
    return args

varargs(1, 2, 3)   # => (1, 2, 3)


# 我们也可以定义一个关键字可变参数函数
def keyword_args(**kwargs):
    return kwargs

# 我们来看看结果是什么:
keyword_args(big="foot", loch="ness")   # => {"big": "foot", "loch": "ness"}


# 这两种可变参数可以混着用
def all_the_args(*args, **kwargs):
    print(args)
    print(kwargs)
"""
all_the_args(1, 2, a=3, b=4) prints:
    (1, 2)
    {"a": 3, "b": 4}
"""

# 调用可变参数函数时可以做跟上面相反的,用*展开序列,用**展开字典。
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
all_the_args(*args)   # 相当于 foo(1, 2, 3, 4)
all_the_args(**kwargs)   # 相当于 foo(a=3, b=4)
all_the_args(*args, **kwargs)   # 相当于 foo(1, 2, 3, 4, a=3, b=4)


# 函数作用域
x = 5

def setX(num):
    # 局部作用域的x和全局域的x是不同的
    x = num # => 43
    print (x) # => 43

def setGlobalX(num):
    global x
    print (x) # => 5
    x = num # 现在全局域的x被赋值
    print (x) # => 6

setX(43)
setGlobalX(6)


# 函数在Python是一等公民
def create_adder(x):
    def adder(y):
        return x + y
    return adder

add_10 = create_adder(10)
add_10(3)   # => 13

# 也有匿名函数
(lambda x: x > 2)(3)   # => True

# 内置的高阶函数
map(add_10, [1, 2, 3])   # => [11, 12, 13]
filter(lambda x: x > 5, [3, 4, 5, 6, 7])   # => [6, 7]

# 用列表推导式可以简化映射和过滤。列表推导式的返回值是另一个列表。
[add_10(i) for i in [1, 2, 3]]  # => [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5]   # => [6, 7]

5. 类

    class Stack(object):
        def __init__(self):
            self.items = []
        def empty(self):
            return self.items == [] 
        def push(self, item):
            self.items.append(item)
        def pop(self):
            return self.items.pop()
        def top(self):
            return self.items[-1]
        def size(self):
            return len(self.items)
        def clear(self):
            self.items = []
class Queue:
    def __init__(self):
        self.items = []
    def empty(self):
        return self.items == []
    def push(self, item):
        self.items.append(item)
    def pop(self):
        return self.items.pop(0);
    def size(self):
        return len(self.items)
# 定义一个继承object的类
class Human(object):

    # 类属性,被所有此类的实例共用。
    species = "H. sapiens"

    # 构造方法,当实例被初始化时被调用。注意名字前后的双下划线,这是表明这个属性或方法对Python有特殊意义,但是允许用户自行定义。你自己取名时不应该用这种格式。
    def __init__(self, name):
        # Assign the argument to the instance's name attribute
        self.name = name

    # 实例方法,第一个参数总是self,就是这个实例对象
    def say(self, msg):
        return "{name}: {message}".format(name=self.name, message=msg)

    # 类方法,被所有此类的实例共用。第一个参数是这个类对象。
    @classmethod
    def get_species(cls):
        return cls.species

    # 静态方法。调用时没有实例或类的绑定。
    @staticmethod
    def grunt():
        return "*grunt*"


# 构造一个实例
i = Human(name="Ian")
print(i.say("hi"))     # 印出 "Ian: hi"

j = Human("Joel")
print(j.say("hello"))  # 印出 "Joel: hello"

# 调用一个类方法
i.get_species()   # => "H. sapiens"

# 改一个共用的类属性
Human.species = "H. neanderthalensis"
i.get_species()   # => "H. neanderthalensis"
j.get_species()   # => "H. neanderthalensis"

# 调用静态方法
Human.grunt()   # => "*grunt*"

6. 模块

queue模块来实现栈和队列

item = 0
import queue

q = queue.Queue(maxsize=0) # 构造队列,maxsize是队列最大长度,如果maxsize小于等于0队列长度无限
q.put(item) # 放入元素
q.get() # 取出元素并返回
q.qsize() # 队列中元素的个数
q.empty() # 队列为空返回 True ,否则返回 False
q.full() # 队列元素达到上限返回 True , 否则返回 False

stk = queue.LifoQueue( maxsize = 0 ) # 构造栈
heap = queue.PriorityQueue(maxsize=0) # 构造优先队列,小根堆

collections.deque双端队列,这里的deque是基于列表实现的,也是复杂度最优的

import collections

dq = collections.deque()

dq.append(item)  # 右端添加
dq.appendleft(item)  # 左端添加
dq.extend(list)  # 从右端逐个添加可迭代对象,Python中的可迭代对象有:列表、元组、字典、字符串
dq.extendleft(list)  # 从左端逐个添加可迭代对象
dq.pop()  # 移除列表中的一个元素(默认最右端的一个元素),并且返回该元素的值
dq.popleft()  # 移除列表中的一个元素(默认最左端的一个元素),并且返回该元素的值,
dq.count()  # 统计队列中的元素个数
dq.insert(index, obj)  # 在指定位置插入元素
dq.clear()  # 将deque中的元素全部删除
dq.remove()  # 移除第一次出现的元素
# 用import导入模块
import math
print(math.sqrt(16))  # => 4.0

# 也可以从模块中导入个别值
from math import ceil, floor
print(ceil(3.7))  # => 4.0
print(floor(3.7))   # => 3.0

# 可以导入一个模块中所有值
# 警告:不建议这么做
from math import *

# 如此缩写模块名字
import math as m
math.sqrt(16) == m.sqrt(16)   # => True

# Python模块其实就是普通的Python文件。你可以自己写,然后导入,
# 模块的名字就是文件的名字。

# 你可以这样列出一个模块里所有的值
import math
dir(math)

7. 高级用法

# 用生成器(generators)方便地写惰性运算
def double_numbers(iterable):
    for i in iterable:
        yield i + i

# 生成器只有在需要时才计算下一个值。它们每一次循环只生成一个值,而不是把所有的
# 值全部算好。这意味着double_numbers不会生成大于15的数字。
#
# range的返回值也是一个生成器,不然一个1到900000000的列表会花很多时间和内存。
#
# 如果你想用一个Python的关键字当作变量名,可以加一个下划线来区分。
range_ = range(1, 900000000)
# 当找到一个 >=30 的结果就会停
for i in double_numbers(range_):
    print(i)
    if i >= 30:
        break

例题

https://www.luogu.com.cn/problem/P1427

https://www.luogu.com.cn/problem/B2022

https://www.luogu.com.cn/problem/P1009

https://codeforces.com/gym/104021/problem/I

https://www.acwing.com/problem/content/4806/

https://www.acwing.com/problem/content/4807/

https://www.acwing.com/problem/content/4808/

答案

输出保留 12 位小数的浮点数

x = float(input())
print("{:.12f}".format(x))

满足的数

n = int(input())
a = list( map( int , input().split(' ') ) )
s = 0
for i in a :
    s += i
res = 0
for x in range( 1 , 5+1 ) :
    if ( s + x ) % (n+1) != 1 :
        res += 1
print(res)

构造矩阵

首先初始化二维矩阵且值全为1,将b[x][y]==0对应的位置都全部赋值为0,检验b[x][y]==1是否合法

n , m = map( int , input().split(' ') )
b = [ list( map( int , input().split(' ' ) ) ) for i in range(n) ]

a = [ [1 for i in range(m)] for i in range(n) ]

for x in range(n):
    for y in range(m):
        if b[x][y] == 0 :
            for i in range(n):
                a[i][y] = 0
            for i in range(m):
                a[x][i] = 0


for x in range(n):
    for y in range(m):
        if b[x][y] == 1:
            cnt = 0
            for i in range(n):
                cnt += a[i][y]
            for i in range(m):
                cnt += a[x][i]
            if cnt == 0:
                print("NO")
                exit()
print("YES")
for x in range(n):
    for y in range(m):
        print( a[x][y] , end=" \n"[ 1 if y == m-1 else 0 ] )

加减乘

dp题目。其实加一和乘二都好处理,难点在于减一。

如果i通过(i+1)-1得到,哪么一定有(i+1)通过(i+1)/2得到。因为如果\((i+1)\)通过i+1得到,那么f[i+1] = f[i] + x , f[i] = f[i+1] + x = f[i]+2*x一定会冲突。

那么(i+1)会不会通过(i+2)-1获得呢?

如果是这样的话,f[i] = f[i+1]+x= f[i+2]+2*x = f[(i+2)/2]+2*x+y,但是会有f[i]=f[x/2]+y=f[x/2+1]+x+y这样的更优解出现

这样的话就只在i为奇数的是否考虑从(i+1)/2转移过来。这样就去掉了后效性

n, x, y = map(int, input().split(' '))
f = [10 ** 18 for i in range(n + 1)]
f[0] = 0
for i in range( 1 , n + 1):
    if i % 2 == 0:
        f[i] = min(f[i // 2] + y, f[i - 1] + x)
    else:
        f[i] = min(f[i - 1] + x, f[(i + 1) // 2] + x + y)
print(f[n])

Base62

这题其实就是进制转换,但是需要高精度,很麻烦,所以我采用了python,这样一来就变成了进制转换的模板了

cti , itc , num = {} , {} , 0
for i in "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz":
    cti[i] = num
    itc[num] = i
    num += 1

x , y , z = input().split(" ")
x = int(x)
y = int(y)
tmp = 0
for i in z :
    tmp = tmp * x + cti[i]
if tmp == 0 :
    print("0")
    exit(0)
res = []
while tmp > 0 :
    t = tmp % y
    tmp //= y
    res.append( itc[t] )
print( "".join(res[::-1]) )

阶乘之和

n = int(input())
fact, res = 1, 0
for i in range( 1 , n+1 ):
    fact *= i
    res += fact
print(res)